
 Application for patent filed March 25, 1993.1

1

THIS OPINION WAS NOT WRITTEN FOR PUBLICATION

The opinion in support of the decision being entered today
(1) was not written for publication in a law journal and
(2) is not binding precedent of the Board.

Paper No. 15

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE BOARD OF PATENT APPEALS
AND INTERFERENCES

Ex parte JAMES R. REINDERS

Appeal No. 96-1588
Application 08/036,9471

ON BRIEF

Before THOMAS, HAIRSTON, and MARTIN, Administrative Patent
Judges.

MARTIN, Administrative Patent Judge.

DECISION ON APPEAL

This is an appeal under 35 U.S.C. § 134 from the examiner's

final rejection of claims 1, 2, 7, 8, 13, 14, 19, 21, and 23

Appeal No. 96-1588
Application 08/036,947

2

under 35 U.S.C. § 103. Claims 3-6, 9-12, 15-18, 20, 22, and 24

stand objected to for depending on rejected claims. We reverse.

The invention relates to a computer system that supports

multiple instruction issues and, more particularly, to a method

of instruction scheduling performed by compilers targeting such

computer systems. In scheduling instructions, the method of the

invention distinguishes between, inter alia, "squeezed" and "non-

squeezed" instructions. The specification (at 4) defines a

squeezed instruction as an instruction that cannot be scheduled

for parallel execution with any other instructions on the

targeted machine and a non-squeezed instruction as an instruction

that can be scheduled for parallel execution with at least one

other instruction on the targeted machine.

Appellant's Figure 8a shows an example of two four-

instruction chains made up of Add, Multiply, and Divide

instructions. The first chain consists of instructions "instr-1"

through "instr-4" and the second chain of instructions "instr-5"

through "instr-8." As explained in the paragraph bridging pages

16 and 17, the Add and Multiply instructions are non-squeezed and

the Divide instruction is squeezed. The schedule size is

initially selected to be as small as possible without considering

the squeezed (i.e., Divide) instructions (page 17, lines 11-15).

Appeal No. 96-1588
Application 08/036,947

3

Because the two Multiply instructions can be paired with two of

the four Add instructions, the shortest possible schedule length

is four time slots, labeled SLOTS 0-3 in the Resource Utilization

Array of Figure 9a. The scheduler builds a candidate instruction

list using the bottom-up approach, starting with the last

instruction in each instruction set: instr-4 and instr-8

(Fig. 9a). Since the instruction chain ending with instr-4

contains more non-squeezed instructions (four) than does the

instruction chain ending with instr-8 (two), the result is that

instr-4 (Multiply) is assigned to the multiplier resource during

SLOT 0 (Fig. 9a). Next the chains ending in instr-3 and instr-8

are compared (Fig. 9b). Because the instruction chain ending

with instr-3 contains more non-squeezed instructions (three) than

does the instruction chain ending with instr-8 (two), instr-3

(Multiply) is assigned to the next time slot available for the

multiplier, i.e., SLOT 1. Next, the chains ending in instr-2 and

instr-8 are compared (Fig. 9c). Because both chains contain two

non-squeezed instructions, the presence of the squeezed

instructions ("Divide") in the second chain are used for tie-

breaking, with the result that instr-8 (Add) is assigned to the

adder resource during its first available time slot, i.e.,

SLOT 0. Next, the chains ending in instr-2 and instr-7 are

Appeal No. 96-1588
Application 08/036,947

4

compared (Fig. 9d). Since the chain ending in instr-2 includes

two non-squeezed instructions (both Add) and the chain ending in

instr-7 includes only one (Add), instr-2 (Add) is selected over

instr-7 (Divide). However, because instr-2 (Add) must be

executed before instr-3 (Multiply), instr-2 cannot be assigned to

SLOT 1 together with instr-3; it must be assigned to the next

time slot, SLOT 2. Thus, in addition to distinguishing between

squeezed and non-squeezed instructions, appellant's scheduling

method takes into account the availability of resources and the

dependency of an instruction on another unexecuted instruction,

factors which are identified as "resource constraints" and

"precedence constraints" in paragraph d of the claim. The

analysis proceeds in the foregoing manner (see Figs. 9e to 9h)

until all of the instructions have been assigned, with the

resulting schedule being shown in Figure 10a.

Claim 1 reads as follows:

1. In a computer system comprising a compiler compiling a
plurality of programs targeted for a multi-issue architecture
computer, a method implemented by a scheduler of said compiler
for determining an execution schedule for executing a basic block
of one of said programs on said targeted computer, said method
comprising the steps of:

a) setting a schedule size for said execution schedule to be
determined in an architectural [sic; architecturally] dependent
manner;

Appeal No. 96-1588
Application 08/036,947

 We are construing "said target machine" as a reference to2

the "targeted computer" recited in the preamble.

5

b) generating a plurality of unassigned schedule slots based
on said schedule size, the number of unassigned schedule slots
generated being a function of said schedule size;

c) selecting an instruction of said basic block using a
plurality of priority functions, said priority functions
distinguishing squeezed instructions from non-squeezed
instructions of said basic block, and factoring said distinction
into their priority evaluations, said squeezed instructions being
instructions that cannot be issued in parallel whereas said non-
squeezed instructions are instructions that can be issued in
parallel;

d) assigning said selected instruction to one of said
unassigned schedule slots without violating resource constraints
of said target machine and precedence constraints of said[2]

instructions of said basic block;

e) repeating said steps c) through d) until all instructions
of said basic block have been scheduled.

All of the appealed claims stand rejected under 35 U.S.C.

§ 102 as unpatentable for obviousness over the following

reference:

Rasbold et al. (Rasbold) 5,202,975 April 13, 1993

Because appellant treats all of the appealed claims as

standing or falling together (Brief at 4), we will address only

claim 1.

Rasbold discloses a software compiler which rearranges the

order of a basic block of instructions in order to reduce the

Appeal No. 96-1588
Application 08/036,947

6

overall execution time of those instructions (col. 1, lines 25-

33). Referring to Figure 1b, Rasbold's sequencing method begins

with all of the instructions being classified in the basic block

(10)m, from which they will be moved to the Leader Set (12) and

then to the Ready Set (16), unless they are Instructions With

Interlocks (18). Figure 2 shows an example of a series of source

equations 20 and corresponding intermediate language statements

21 that approximate assembly language instructions (col. 9, lines

11-16). Membership in the Leader Set is determined by

constructing a direct acyclic graph (DAG) 22, which depicts the

dependency of the instructions in the basic block (col. 9, lines

16-29). Each instruction is assigned a "cost" representing the

time consequence of not issuing the instruction; an instruction

from which many others depend has a higher cost than an

instruction from which few others depend (col. 9, lines 30-36).

With the aid of the DAG, each instruction in the basic block that

has not yet been scheduled is placed in the Leader Set if it is

not dependent on any unissued instructions (col. 9, lines 53-56;

col. 11, lines 13-19). This function is represented as step 40

in the flow chart of Figure 4. In step 60, the desired issue

time (DIT) is calculated for each instruction in the Leader Set,

after which the instructions with a DIT less than the current

Appeal No. 96-1588
Application 08/036,947

7

simulation time are moved to the Ready Set (step 62) (col. 11,

lines 19-29). If the Ready Set is empty (step 44) and the Leader

Set is empty (step 54), all of the instructions have been

scheduled and the process ends; if the Ready Set is not empty

(step 44), the instruction in the Ready Set having the highest

cost is scheduled (step 46) and its node and outward edges are

removed from the DAG (step 48) (col. 11, lines 33-39). The

simulation time is then advanced to the point in time at which

the just issued instruction would issue (step 64) (col. 11, lines

40-42). The machine resources such as registers and the

functional unit are assigned to the scheduled instruction at step

50, and any new interlocks caused by the assignment of machine

resources are checked to see if instructions in the Ready Set

need to moved back into the Leader Set (step 52) (col. 11, lines

42-48). The process then returns to the beginning, to schedule

the next instruction (col. 11, lines 48-49).

The examiner concedes that Rasbold does not expressly

characterize his instructions as squeezed and non-squeezed, but

argues that "it would have been obvious to a person of ordinary

skill in the art that the claimed squeezed/(not squeezed)

instructions are not more than the dependent/independent

Appeal No. 96-1588
Application 08/036,947

8

instructions, to the extent claimed" (Answer at 3, para. 11).

We agree with appellant that the examiner's position ignores the

fact that terms "squeezed" and "non-squeezed" are defined in

paragraph c of the claim and at page 4 of the specification in a

way that clearly distinguishes them from the dependent/

independent concept and that the claim must be construed in

accordance with those definitions. See In re Morris, 127 F.3d

1048, 1054, 44 USPQ2d 1023, 1027 (Fed. Cir. 1997):

[T]he PTO applies to the verbiage of the proposed claims the
broadest reasonable meaning of the words in their ordinary
usage as they would be understood by one of ordinary skill
in the art, taking into account whatever enlightenment by
way of definitions or otherwise that may be afforded by the
written description contained in the applicant's
specification.

Nothing in Rasbold suggests selecting instructions based on the

claimed squeezed/non-squeezed distinction. The DAG diagram in

Rasbold's Figure 2 and the associated "cost" for each instruction

node clearly concern dependence versus independence. Rasbold's

teaching of avoiding interlocks caused by the assignment of

machine resources (col. 11, lines 42-48) corresponds to

appellant's step of selecting instructions without violating

"resource constraints" (claim para. d); it is not a squeezed/non-

squeezed distinction. Nor is Rasbold's calculation of the

Desired Issue Time (DIT) for each instruction.

Appeal No. 96-1588
Application 08/036,947

9

For the foregoing reasons, the rejection of claim 1 under

§ 103 as unpatentable over Rasbold is reversed, as is the

rejection of the claims that stand or fall with claim 1, i.e.,

claims 2, 7, 8, 13, 14, 19, 21, and 23.

 REVERSED

)
JAMES D. THOMAS)
Administrative Patent Judge)

)
)
) BOARD OF PATENT

KENNETH W. HAIRSTON)
Administrative Patent Judge) APPEALS AND

)
) INTERFERENCES
)

JOHN C. MARTIN)
Administrative Patent Judge)

Appeal No. 96-1588
Application 08/036,947

10

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN
12400 Wilshire Boulevard, 7th Floor
Los Angeles, CA 90025

